Enhanced Super-resolution Imaging by Bilayer Aluminum Superlens in DUV Photolithography

Jing WANG

Shanghai Industrial µTechnology Research Institute (SITRI); **School of Microelectronics, Shanghai University**

Email: jing_wang@shu.edu.cn

Introduction

SITRI

- In 2000, Pendry theoretically proposed that [1], a metal planar can be used for imaging beyond diffraction limit, which was then experimentally demonstrated by Zhang et al in 2005 [2].
- Bilayer metal planar superlens has been studied its superior imaging ability and simple for based on approximate effective structure, medium theory (EMT) [3] or 3-layer MIM waveguide theory [4].

Bilayer Metallic Superlens

From the object plane just behind the mask to the imaging plane, the imaging system with bilayer superlens is a finite-thickness metal-insulatormetal (f-MIM) structure, or 5-layer.insulatormetal-insulator-metal-insulator (IMIMI).

In this poster, the photolithographic system with bilayer AI planar superlens was theoretically investigated to enhance super-resolution imaging performance, based on the five-layer waveguide theory, SPP mode cutoff method, and full-vector FDTD verification.

Single Metallic Superlens

Metallic superlens compensates exponential decay of the evanescent field away from the object by surface plasmons (SP) resonances.

The optical transfer function [5] of the 3-layer insulator-metal-insulator (IMI) system

$$\tau = \tau_1 \cdot \tau_m \cdot \tau_3$$

$$\tau_i = \exp(ik_{zi}d_i), i = 1, 3$$

$$\tau_m = \frac{t_0 t_d \exp(ik_{zm}d)}{1 - r_0 r_d \exp(2ik_{zm}d)}$$

Fig. 3 Near-field photolithographic imaging system of double-layer metal superlens.

Optical transfer function from object plane to image plane:

$$\begin{aligned} \tau_{f-MIM} \\ &= \tau_{s1} \cdot \tau_{d} \cdot \tau_{s2} \\ &= \frac{e_{s1} \cdot t_{p_s1} \cdot t_{s1_d}}{1 - e_{s1}^{2} \cdot r_{s1_p} \cdot r_{s1_d}} \\ &\cdot \frac{e_{d}}{1 - e_{d}^{2} \left(\frac{r_{d_s2} + e_{s2}^{2} \cdot r_{s2_q}}{1 - e_{s2}^{2} \cdot r_{s2_d} \cdot r_{s2_q}}\right) \left(\frac{r_{d_s1} + e_{s1}^{2} \cdot r_{s1_p}}{1 - e_{s1}^{2} \cdot r_{s1_p} \cdot r_{s1_d}}\right) \\ &e_{a} \cdot t_{a} \cdot a \cdot t_{a} \end{aligned}$$

The most remarkable and highest peak, located in proximity to kx/k0=2, was associated with s-LRSPP mode. This amplification would adversely affect super-resolution imaging.

s-LRSPP mode cutoff and FDTD validation

Fig. 1 Near field imaging system with the single metallic superlens

It was known that, typical transfer function of a thin Al superlens contains two amplification peaks, corresponding to two excited SPP modes.

 c_{s2} c_{d_s2} c_{s2_q} $\overline{1-e_{s2}^2\cdot r_{s2_d}}\cdot r_{s2_q}$

Dispersion relation of five-layer waveguide [6]:

 e_d^2 $= \left[e_{s2} \left(k_{z_q} / \varepsilon_q - k_{z_s2} / \varepsilon_{s2} \right) \left(k_{z_q} / \varepsilon_q - k_{z_s2} / \varepsilon_{s2} \right) \right]$ $+e_{s2}^{-1}\left(k_{z_{q}}/\varepsilon_{q}+k_{z_{s2}}/\varepsilon_{s2}\right)\left(k_{z_{q}}/\varepsilon_{q}+k_{z_{s2}}/\varepsilon_{s2}\right)\right]$ $\cdot \left[e_{s1} \left(k_{z_p} / \varepsilon_p - k_{z_s1} / \varepsilon_{s1} \right) \left(k_{z_s1} / \varepsilon_{s1} - k_{z_d} / \varepsilon_d \right) \right]$ $+e_{s1}^{-1}\left(k_{z_{p}}/\varepsilon_{p}+k_{z_{s1}}/\varepsilon_{s1}\right)\left(k_{z_{s1}}/\varepsilon_{s1}+k_{z_{d}}/\varepsilon_{d}\right)$ $/ \left[e_{s2} \left(k_{z_q} / \varepsilon_q - k_{z_s2} / \varepsilon_{s2} \right) \left(k_{z_q} / \varepsilon_q + k_{z_s2} / \varepsilon_{s2} \right) \right]$ $+e_{s2}^{-1}\left(k_{z_q}/\varepsilon_q+k_{z_s2}/\varepsilon_{s2}\right)\left(k_{z_q}/\varepsilon_q-k_{z_s2}/\varepsilon_{s2}\right)\right]$ $/ \left[e_{s1} \left(k_{z_p} / \varepsilon_p - k_{z_s1} / \varepsilon_{s1} \right) \left(k_{z_s1} / \varepsilon_{s1} + k_{z_d} / \varepsilon_d \right) \right]$ $+e_{s1}^{-1}(k_{z_p}/\varepsilon_p+k_{z_{s1}}/\varepsilon_{s1})(k_{z_{s1}}/\varepsilon_{s1}-k_{z_d}/\varepsilon_d)$

SPP modes and MTF

IMIMI waveguide could support up to 4 SPP modes, e. g. symmetrically coupled long-range SPP (s-LRSPP), antisymmetrically coupled LRSPP(a-LRSPP), symmetrically coupled shortrange SPP (s-SRSPP), and antisymmetrically-

Fig. 6 For W mask of two slits with a slit width 15nm and a spacer width 15nm, the normalized electrical filed intensity (a) before mode cutoff and (b) after mode cutoff, on the image plane by FDTD simulations.

Conclusion

Intrinsic relation between transfer function of photolithographic imaging system with bilayer Al superlens and SPP modes of IMIMI waveguide. Cutoff symmetrically coupled long-range SPP (s-LRSPP) for improving the imaging performance. Improved super-resolution imaging performance (two slits with a slit width 15nm and a spacer width 15nm) was verified by full-vector FDTD simulations.

(a) effective mode indices of a-LRSPP, s-LRSPP, a-Fig. 4 SRSPP and s-SRSPP of IMIMI waveguide, and (b) the transmission coefficient of f-MIM waveguide, for two 10nm AI superlenses and a sandwiched SiO2 layer.

Funding

Shanghai Pujiang Program (20PJ1418600)

Reference

[1] J. B. Pendry, Phys. Rev. Lett. 85, 3966-3969 (2000).) [2] N. Fang, H. Lee, C. Sun and X. Zhang, Science, 308, 534-537 (2005) [3] K. Elsayad and K. G. Heinze, PLoS One, vol. 4, no. 12, 2009 [4] B. Zeng, X. Yang, C. Wang, and X. Luo, Opt Express, vol. 17, no. 19, 2009 [5] G. Tremblay and Y. Sheng, Applied Optics, Vol. 49, No. 7 (2010) [6] L. Wang, Y. Gu, X. Hu, and Q. Gong, Appl Phys B, vol. 104, no. 4, pp. 919–924, 2011